25,651 research outputs found

    Experiments for multibeam Backscatter Adjustments on the NOAA Ship FAIRWEATHER

    Get PDF
    A series of experiments were conducted to adjust and normalize the acoustic backscatter acquired by Reson 8111 and 8160 systems. The dependency of the backscatter on the receiver gain, transmit power, pulse width and acquisition mode was analyzed. Empirical beam patterns are calculated as the difference between the backscatter measured by the sonars and the expected backscatter. Expected acoustic backscatter is estimated based on a mathematical model

    Geocoder: An Efficient Backscatter Map Constructor

    Get PDF
    The acoustic backscatter acquired by multibeam and sidescan sonars carries important information about the seafloor morphology and physical properties, providing valuable data to aid the difficult task of seafloor characterization, and important auxiliary information for a bathymetric survey. One necessary step towards this characterization is the assemblage of more consistent and more accurate mosaics of acoustic backscatter. For that, it is necessary to radiometrically correct the backscatter intensities registered by these sonars, to geometrically correct and position each acoustic sample in a projection coordinate system and to interpolate properly the intensity values into a final backscatter map. Geocoder is a software tool that implements the ideas discussed above. Initially, the original backscatter time series registered by the sonar is corrected for angle varying gains, for beam pattern and filtered for speckle removal. All samples of the time series are preserved during all the operations, ensuring that the full data resolution is used for the final mosaicking. The time serie s is then slant-range corrected based on a bathymetric model, in the case of sidescan, or based on beam bathymetry, in the case of the multibeam. Subsequently, each backscatter sample of the series is geocoded in a projected coordinate system in accordance to an interpolation scheme that resembles the acquisition geometry. An anti-aliasing algorithm is applied in parallel to the mosaicking procedure, which allows the assemblage of mosaics at any required resolution. Overlap among parallel lines is resolved by a priority table based on the distance of each sample from the ship track; a blending algorithm is applied to minimize the seams between overlapping lines. The final mosaic exhibits low noise, few artifacts, reduced seams between parallel acquisition lines and reduced clutter in the near-nadir region, while still preserving regional data continuity and local seafloor features

    Clustering Acoustic Backscatter in the Angular Response Space

    Get PDF
    Backscatter mosaicking is a necessary step in the analysis and interpretation of sidescan and multibeam sonar records. However, due to limitations intrinsic to the mosaicking technique, backscatter mosaics are restricted in their capacity to unambiguously discriminate seafloor properties. A more adequate technique to characterize the seafloor is the analysis of backscatter angular responses, since those responses are intrinsic properties of the seafloor. This technique sometimes lacks spatial resolution, however, as the analysis is limited to the swath width of the sonar. In this paper, we propose an approach to combine mosaicking and angular response analysis techniques in an attempt to take advantage of both the spatial resolution of the mosaic, and the angular resolution derived from the angular response analysis. In order to test these ideas, we used acoustic backscatter acquired by a Reson 8101 (240kHz) multibeam sonar during normal survey operations conducted on the NOAA Ship FAIRWEATHER around Cape Decision, Alaska in spring 2005. First, we defined parameters that uniquely described the angular responses, and treated those parameters as a feature vector in a multidimensional space. The parameters were then clustered with a simple unsupervised clustering algorithm. The result of the clustering analysis defined areas on the seafloor which had similar angular responses, which we called themes. We then used these themes to develop more robust indicators of angular response from their coverage areas, which were finally used as Angle Varying Gain correction tables to assemble an enhanced mosaic

    Simple Non-Markovian Microscopic Models for the Depolarizing Channel of a Single Qubit

    Full text link
    The archetypal one-qubit noisy channels ---depolarizing, phase-damping and amplitude-damping channels--- describe both Markovian and non-Markovian evolution. Simple microscopic models for the depolarizing channel, both classical and quantum, are considered. Microscopic models which describe phase damping and amplitude damping channels are briefly reviewed.Comment: 13 pages, 2 figures. Title corrected. Paper rewritten. Added references. Some typos and errors corrected. Author adde

    The ion motion in self-modulated plasma wakefield accelerators

    Get PDF
    The effects of plasma ion motion in self-modulated plasma based accelerators is examined. An analytical model describing ion motion in the narrow beam limit is developed, and confirmed through multi-dimensional particle-in-cell simulations. It is shown that the ion motion can lead to the early saturation of the self-modulation instability, and to the suppression of the accelerating gradients. This can reduce the total energy that can be transformed into kinetic energy of accelerated particles. For the parameters of future proton-driven plasma accelerator experiments, the ion dynamics can have a strong impact. Possible methods to mitigate the effects of the ion motion in future experiments are demonstrated.Comment: 11 pages, 3 figures, accepted for publication in Phys. Rev. Let
    • …
    corecore